NSMB results for the 2nd High Lift Prediction Workshop

- T. Deloze, E. Laurendeau Ecole Polytechnique de Montréal, Canada
- Icube, Université de Strasbourg, France
- J. Vos CFS Engineering, Switzerland

Outline

- Introduction
 - Motivations
 - NSMB CFD solver
 - Test cases performed
- Results
 - steady simulations
 - · unsteady simulations
- Conclusions

Motivations

- to obtain better understanding of the physics of high lift flows
- to better understand the difficulties in simulating high lift flows
- to test our CFD code
- to obtain results for chimera validation

CFD solver: NSMB (Navier-Stokes Multi-Block) **History**:

- In 1992, NSMB is developped in an international consortium with industrial partners (Airbus & SAAB Military Aircraft, CFS) Engineering) and academic partners in France, Germany and Switzerland (EPFL, SERAM, IMFT, KTH, CERFACS)
- Today, it is developed by EPFL, ETH, Icube, IMFT, TUM, Polytechnique Montreal, CFS Engineering and RUAG and NSMB is being used by Airbus-France, EADS-ST and KTH

Descriptions:

- Finite volume Navier-Stokes solver with multi-blocks definition.
- Wide code based on general features of modern CFD (grid flexibility, space discretization schemes, time integration, convergence acceleration, parallel computing, ...)

Test case performed:

Case 1, configuration 2

Configuration:

DLR-F11 in landing configuration slat 26.5 deg, flap 32 deg without bracket

Flow parameters:

Mach = 0.175

Angles-of-attack = 7, 16, (22.4) deg

Reynolds number = 15.1 million based on MAC

Ref. Static Temperature = 114.0 K Ref. Static Pressure = 295000

Static Pressure = 295000 Pa

Fully turbulent

Meshes:

Committee-supplied structured 1-to-1 grids : A_str_1to1_Case1Config2

3 grid sizes:

	cells	dy [mm]	dy / MAC
coarse	9,556,725	0.0006525	1.88e-6
medium	31,998,440	0.000435	1.29e-6
fine	100,561,536	0.00029	0.83e-6
		'	'

Reference:

$$C_{ref} = MAC = 347.09 \text{mm}$$

 $S_{ref} = 419,130 \text{mm}^2$
 $(x, y, z)_{ref} = (1428.90, 0.0, -41.61) \text{mm}$

Parameters of simulations

All calculations were made using the following parameters :

- Space discretization : 4th order central scheme with artificial dissipation (JST)
- Time integration : implicit 2nd order backward, LU-SGS
 - · steady: local time step, no multigrid
 - unsteady : dual time stepping ($\Delta t = 0.005$), multigrid
- Turbulence models : SA, SA Edwards, SA-salsa

List of simulations

Steady (27 simulations) :

Grid	coarse			medium			fine		
Angles (deg)	7	16	22.4	7	16	22.4	7	16	22.4
SA	Х	Х	Х	Х	Х	Х	Х	Х	Х
SA-salsa	Х	Х	Х	Х	Х	Х	Х	Х	Х
SA-Edwards	Х	Х	Х	Х	Х	Х	Х	Х	Х

■ Unsteady (7 simulations) :

Grid	coarse			medium			fine		
Angles (deg)	7	16	22.4	7	16	22.4	7	16	22.4
SA				Х					
SA-salsa				Х	Х	Х			
SA-Edwards				Х	Х	Х			

Convergence of simulation

Each simulation NITER > 50,000Average performed after NITER = 25,000

Drag and Lift coefficients versus angle of attack

Drag and Lift coefficients: polar representation

Pitching moment coefficient

Variation of coefficients (on medium grid)

Mesh convergence

Pressure distribution

Velocity along the vertical lines

Velocity along the vertical lines

Velocity along the vertical lines

Convergence and coefficients evolution versus iterations

Unsteady flow

Isovalue of criteria λ_2 =-2000, colored by *U*-velocity (SA-Edwards, $\alpha=7$ [deg])

Streamwise velocity in the cross-sections of the wing (Y-plane)

Time evolution of the pressure on 6 points on the flap

Steady versus unsteady results

(SA-Edwards)

Unsteady simulations (on medium grid)

(SA-Edwards)

Conclusion

- Complex behavior of SA and SA-salsa versus angles of attack and grid size
- SA-Edouards less sensitive to the unsteady flow and grid size than SA and SA-salsa
- Moderate to high angles of attack need unsteady simulation
- Complex flows with different time/space scales
- Interaction between flap vortex shedding and tip vortex for low angle of attack

Outlook:

- Comparaison for unsteady simulation with time-average values
- To focus on the attraction of the vortex shedding by the tip vortex
- Simulation of the configuration with brackets, case 3 (need structured mesh)
- Simulation of the case 1 with overset grid and flap motion (need mesh)

Acknowledgements:

- Bombardier Aerospace
- CRIAQ
- NSERC CRSNG
- Compute Canada

CRIAQ/NSERC/Bombardier MDO-508 INTL

BOMBARDIER the evolution of mobility

Thank you for your attention

thibaut.deloze@polymtl.ca eric.laudendeau@polymtl.ca

yannick.hoarau@unistra.fr

jan.vos@cfse.ch

Simulation : medium grid, SA, $\alpha = 22.4 deg$

